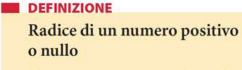
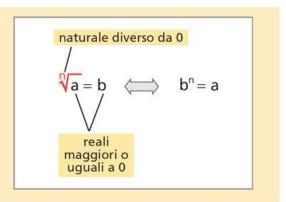
Radicali nell'insieme dei reali positivi

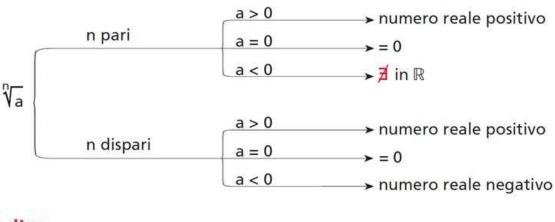


Dati un numero naturale *n*, *diverso da* 0, e un numero reale *a*, *positivo o nullo*, la radice *n*-esima di *a* è quel numero reale *b*, *positivo o nullo*, la cui potenza con esponente *n* è uguale ad *a*.



Radicali nell'insieme dei reali

Dati un numero naturale n, diverso da 0 e un numero reale a, si chiama radice n-esima del numero a il numero reale b, se esiste, avente lo stesso segno di a, la cui potenza con esponente n è uguale ad a



Si chiama radicale il simbolo $\sqrt[n]{a}$ di cui n è l'indice e a il radicando

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$
 infatti:

DEFINIZIONE

Potenza con esponente razionale

La potenza con esponente razionale $\frac{m}{n}$ di un numero reale a, positivo o nullo, è la radice n-esima di a^m .

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
 $(a \ge 0)$

da cui si deduce:

$$\sqrt[n]{a^m} = a^{\frac{m}{n}} = a^{\frac{mp}{np}} = \sqrt[np]{a^{mp}}$$

TEOREMA

Dato un radicale, si può ottenere un radicale equivalente moltiplicando per uno stesso numero naturale (*diverso da* 0) sia l'indice del radicale sia l'esponente del radicando.

$$\sqrt[n]{a^m} = \sqrt[n \cdot p]{a^m \cdot p}$$

e viceversa
$$\sqrt[np]{a^{mp}} = a^{\frac{mp}{np}} = a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

TEOREMA

Dato un radicale, si può ottenere un radicale equivalente dividendo l'indice della radice e l'esponente del radicando per un divisore comune.

$$\begin{array}{ccc}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

Operazioni con i radicali

TEOREMA

Teorema del prodotto

Il prodotto di due radicali con lo stesso indice è un radicale che ha per indice lo stesso indice e per radicando il prodotto dei radicandi, ossia

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$$

con a e b reali, $a \ge 0$, $b \ge 0$ e n naturale, $n \ne 0$.

TEOREMA

Il quoziente di due radicali (il secondo *diverso da* 0) con lo stesso indice è un radicale che ha per indice lo stesso indice e per radicando il quoziente dei radicandi.

$$\sqrt[n]{a}$$
: $\sqrt[n]{b} = \sqrt[n]{a : b}$, con $a \in b$ reali, $a \ge 0 \in b > 0$, n naturale, $n \ne 0$.

TEOREMA

La potenza *m* -esima di un radicale è un radicale che ha per indice lo stesso indice e per radicando la potenza *m* -esima del radicando, ossia

$$(\sqrt[n]{a})^m = \sqrt[n]{a^m}$$
, con $n \in m$ naturali, $n \neq 0$ e $m \neq 0$, e a reale, $a \geq 0$.

$$\left(\sqrt[n]{a}\right)^m = \left(a^{\frac{1}{n}}\right)^m = a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

TEOREMA

La radice m-esima di un radicale di indice n è un radicale che ha per indice il prodotto degli indici $m \cdot n$ e per radicando lo stesso radicando.

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m-n]{a}$$

con m e n naturali, $n \neq 0$ e $m \neq 0$, e a reale, $a \geq 0$.

Infatti
$$\sqrt[n]{a^m} = a^{\frac{m}{n}} = a^{\frac{mp}{np}} = \sqrt[np]{a^{mp}}$$

Si applicano infatti le proprietà delle potenze, che già conosciamo:

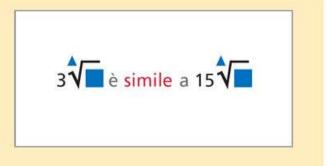
PROPRIETÀ	ESPRESSIONE	CON
1. Prodotto di potenze di ugual base	$a^m \cdot a^n = a^{m+n}$	
2. Quoziente di potenze di ugual base	$a^m: a^n = a^{m-n}$	$a \neq 0$
3. Potenza di una potenza	$(a^m)^n = a^{m \cdot n}$	
4. Prodotto di potenze di ugual esponente	$a^n \cdot b^n = (a \cdot b)^n$	
5. Quoziente di potenze di ugual esponente	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$	$b \neq 0$
6. Segno di una potenza	$(-a)^d = -a^d$ $(+a)^d = +a^d$ $(\pm a)^p = +a^p$	d numero dispari d numero dispari p numero pari
7. Potenza con base frazionaria ed esponente negativo	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n = \frac{b^n}{a^n}$	$a \neq 0 \land b \neq 0$

Addizione fra radicali simili

DEFINIZIONE

Radicali simili

Due radicali irriducibili si dicono simili quando hanno lo stesso indice, lo stesso radicando e possono essere diversi solo per il fattore che li moltiplica, detto coefficiente del radicale.



REGOLA

Somma algebrica di radicali simili

La somma algebrica di due o più radicali simili è il radicale, simile ai dati, che ha come coefficiente la somma algebrica dei coefficienti.

